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Abstract. The interaction potential between two planar methyl radicals is investi-
gated based on the available ab initio calculations. Two components contribute to
this potential: a bonding potential, V5, an angle-dependent square of the overlap
integral for unoccupied p, orbitals, and a nonbonding potential, Vyg, a total of the
long-range dispersive and short-range repulsive interactions. The analytical form
of the potential, valid at longer distances, can be used for evaluation of the matrix
elements of functions describing rotational states.
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1 Introduction

Theoretical studies of reaction kinetics involve frequently the use of the potential
energy surface of interacting reagents. The details of this surface can be elucidated
mostly, although not exclusively, on the basis of ab initio calculations. Different
analytical forms employing different approximations can be used. The interaction
of methane molecules is a good example that has been studied extensively using
this approach [1]. Also the reaction H + CH; — CH, attracted considerable
attention [2].

If quantum mechanical methods are to be used, the form of the ¥ potential that
describes the interaction of reactants has to be peculiar, so as to make it possible to
calculate easily the matrix elements of the type

Vom = f---fwwm de. (1)

where i, and ,, are the wave functions of the Hamiltonian of the system and dz is
the element of volume. The potential expressed in this form may be very useful in
investigations on weakly interacting systems [3].

For radicals interacting in the gas phase at longer distances, the y, functions
refer mainly to the rotational states and can be expressed as linear combinations of
products of generalized spherical functions and spherical harmonics [3]. As calcu-
lations of the integrals shown in Eq. (1) involve the use of recurrent relations, the
derived form of the potential has to be amenable to such a treatment.
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It is also of importance that all the forces connected with this potential be
strictly Newtonian. The principle of total momentum conservation is thereby
satisfied and the recurrent formulae describing addition of momenta in quantum
mechanics can be used [3, 4].

As a model system we use the interaction of methyl radicals [5,6].
There have been many ab initio studies of this interaction energy. From our
point of view the work of Darvesh et al. [5] is of greatest importance. The
method was modeled on those used successfully on the CH, system. The
energy was estimated using the multireference single- and double-excitation
configuration interaction (MRD CI) method. A flat equilateral geometry

was selected for CH; at a bond length for C-H of 1.079 A. The orientations
and distances r between the radicals were varied. The cases examined are
listed in Table 1. The interaction energy V is the difference between the
total energy of the system at a given r and the energy at a very long
distance (20 A) when the radicals do not interact for all practical
purposes. The values for V are shown in Table 2 in dependence on orientation and
distance.

2 Notation and basic relations

The methods described below are general. Adaptation to more or less complicated
systems is straightforward. The only requirement imposed is that the potential be
separable into the constituents which incorporate the bonded and nonbonded
interactions [7]:

V = VB + VNB- (2)

The V3 part arises from the overlap of nonfilled orbitals occupied by the
unpaired electrons of the radicals. This potential is always attractive at opposed
spins and it is involved in the formation of the C—-C bond.

The second component, Vyg, is the sum of interactions of the individual
pairs:

Vg = Z Z Vij(”ij)- 3)

i

These may be, for instance, interactions of the pairs H---H, H---C, C---C and
many others. The symbol r;; denotes the distance between the ith component of the
first fragment and the jth component of the second fragment. These interactions
result from fluctuations of electron densities and repulsions of fully occupied
electron orbitals.

In the frame of the center-of-mass system, Xy, Y;,Z; and X,, Y,, Z, refer
to the first and second fragments, respectively. The coordinates Xx{1yi, V(1)i» Z(1)i
and X{3)j, Yi2)j» Z(2); determine the location of individual atoms with respect
to the radical center-of-mass (i,j=1,2,3,4). From now on the subscripts
(1) and (2) will be omitted and retained only for the general coordinates
which do not refer to a particular component. Next, we introduce the
common center of mass X,Y,Z where X =(MX, + M,X,)/(M, + M;)
etc, and the relative coordinates which are expressed in the spherical
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Table 1. Values of angles at the different interradical orientations [5]

Geometry o /T Bi/m /T fa/m
s 0 1 1 4 V A
A 1 3 1 3 Y \(

D 3 0 1 3 >— \(

TSTS
F 3 3 3 : <<

G 3 3 } 3 >"<
1 3 3 0 } \hj\
] 3 : 0 3 /Zf//\
K 3 3 3 3 j/j

P 3 } 0 3 —gA

o

ey}

.
o
(¥
[

EP 3 0

ks
[ST

Other angles are:
71=0 7,=0 O=in ¢=0

coordinates r, 8, ¢ where r is the distance between the centers of mass of the
fragments:

X, — Xy =rsinfcos ¢,
Y, — Y, =rsinOsin ¢,
ZZ _Zl = I"COSH. (4)
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Table 2. Interaction potential for the methyl radicals estimated by the ab initio method [5], ¥, and for

the structures listed in Table 1

Struct. v Vv Vv vV
ab initio fitted first set fitted second set analytical form eq. (42)

2.5F* 28921 28927 29.675

2.58 —19.168 —19.126 — 15.684

3EP 12.375 11.986 8.871

3K —2.691 —2930 —3.047

3] —5.041 —5.145 — 5333

31 —5.289 — 5373 — 5455

3G 47.468 47.467 49.821

3F 4410 4333 4.008

3E 11.185 11.595 8.439

3A —7.557 —7.557 —7.691

38 —7.624 —17.57 — 7.706

3.58 — 2553 —2.320 —249%4 —2.506
4P —0.304 —0.283 —-0.292 —0.288
41 —0.652 —0.598 —0.650 —0.645
4F —0.380 —0.265 —-0271 —0.307
4E —0.390 0.012 —0.049 —0.307
4D —0.249 —0.168 — 0236 —0.288
4A — 0810 —0.699 —0.767 —0.764
45 — 0813 —0.699 — 0767 —0.764
208 0.000 0.000 0.000 0.000

* A number preceding the name of the structure gives the distance in 1n\; energy is given in kcal/mol

Also dimensionless variables are introduced:

x,-j—-

%i}'

’ '
_Xj—'xi

’ ’
_Zj—“Z,'

r

()

The x{1), ¥(1y, z(1y coordinates are related to X(1), (1), 2(1) coordinates inter-
linked rigidly with the radicals by the orthogonal transformation

where

Sy

X(1)
J’h)

Z)

cos oy cos fiy cosy; — sina, siny;

sino; cos By cosyy + cosay siny;

—sin fi; cosy

X(1)
=5 yzll) »

'
Z(1)

— cosay cos fiy siny; — sino; COS Yy

— sino; cos B siny; + cosoy COS Yy

sin B, siny;

(6)

cos oy sin fi;
sin oy sin ff;

cos fiy

™
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Fig. 1. Euler diagram depicting the location
of radicals in the primed system x', y’, z’

Fig. 2. Location of methyl
radicals in the doubly primed
system x", y”, 2" (rcy = 1.079 A)

The Euler angles, o, 8 and y, are shown in Fig. 1. The location and coordinates
of radicals in the doubly primed system x”, y”, z” are shown in Fig. 2.
Analogous relations can be written for the second fragment, i.e. X(), ¥(), Z(2);

X(Z): YE,Z), ZEIZ); dy, 2,72, and S,.
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Taking all these relations into account, the distance r; can ultimately be
transformed into

Fij = r\/(a:,-,- + sin 6 cos ¢)* + (z4; + sin 0 sin O + (% + cos 6)2. 8)

3 Bonding interaction Vy

It can be assumed that the carbon atom in the planar methyl radical is in a state of
sp? hybridization. Thus the orbital p, occupied by only one electron is located in
the plane perpendicular to the plane of the radical. The partially occupied orbitals
overlap and the interaction potential Vg is, according to Mulliken [8], proportional
to the square of the overlap integral. The overlap integral can be written in the
form [9]

to + o0 + o
s =j f J Py(%, ¥, 2)P22)(%, ¥, 2) dt, ©)

—® o) —

where p,1) and p,(;, refer to the first and second fragments, respectively, while
dt = dx dy dz is the element of volume of some arbitrarily fixed reference system.
For the system x”, y”, z" the orbitals p, are given by [9]

R Zrll
Pz1y = Nz(y) exp <" 24:(1,)) , (10)
= /X + ¥ + 25, (11
Y Zrlf
P22y = Nz(3exp <- _2;1'(‘3‘)> > (12)

ey = /X3 + Y5 + 23, (13)
where N is the normalization constant, Z is the nucleus charge and g, is the radius

of the Bohr orbit [9].
Using transformation reciprocal to Eq. (7) the orbitals p,;, and p,;) become

’ - ! : . ' Zr,l
pz(l) = N[x(l) COS ¢y SIn ﬁl + y(l) Sin oy Slnﬁl + Z(l) COS ﬁl] €Xp <‘ '——2(; )> R (14)
0

’ 3 ’ . . ’ ZrEZ
Pz2y = N[ x(2) cos oy sin 5 + iz sina, sin B, + z(z) €os B, exp <— Sa )> . (15)
0

Using the substitution x(;, = xy — X1 + X; x5y = xm — X, + X etc,, the sys-
tem of the center of mass for both the fragments is introduced.
If M, = M, we obtain

X(1) = Xy + 37 sin 0 cos ¢,
Vi) = ym + 3¢ sin 0 sin ¢,

Z(1) = zy + 37 cosd (16)
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and
X(z) = Xy — 37 sin 6 cos ¢,
Yy = yu — 37 sin @ sin ¢,
Z(gy = zy — 37 cOs 6. 17)

Substitution from Egs. (16) and (17) into (14) and (15) followed by rotation of
the system Xy, Yu, Zy through the angles 6 and ¢ leads to

XM cosfcos¢p —sing sinfcos¢ X
ym | =| cos8sing cos¢ sinfsing y | (18)
Znm —siné 0 cosf

Finally we obtain

Pz1y = {x[cos O sin B; cos(¢p — ;) —sinf cos f;] — y sin f; sin(¢ — o)

2a,
(19)

P22y = {x[cos O sin B, cos(¢ — az) — sinf cos f,] — y sin fi, sin (¢ — a3)

+ (z — 37)[cos O cos B, + sin O sin B, cos(¢p — )]} exp <— @> ,

Z
+ (z + 37) [cos 6 cos B, + sin @ sin B; cos(¢p — a;)]} exp (— M) ,

2a,
(20)
where
ray = \/xz + 2+ (z + 374 (21)
ray=~/X2 +y? +(z — 32 (22)

The functions p,q, and p,( are now substituted into Eq. (9). With the use of
elliptical coordinates the integral in Eq. (9) acquires an elementary form which can
be computed. We obtain

s= NZexp (— %) [fi(r) cos By, — f2(r) cos 0, cos B, ], (23)

where
cos 8y = cos f3; cos 6 + sin fy sin 8 cos (¢ — o), (24)
cos B, = cos ff; cosf + sin f, sin 6 cos(¢p — o), (25)
cos By, = cos f§; cos 8, + sin f§; sin 8, cos{ory — a3) (26)

and
fit)) =1 + a[15 + a(6 + a)], (27)
for) = a®3[1 + a(l + 3a)], (28)
Zr

a=— (29)

2a0°
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As the energy Vj is proportional to the square of the overlap integral we can
write

Vg = —Aexp (—— ?) [fi(r) cos By, — fo{r) cos 6, cos 8,72, (30)
0

where A is the constant expressed in terms of energy.

Our result differs somewhat from that obtained earlier by Darvesh et al. [5].
The common feature is the exponential decrease in Vi with increasing r. The angle
dependencies are not the same, however. Darvesh et al. single out the o-overlap
(structures S, A, I, J, K) and the n-overlap (structures E, F, G); some of their
structures, such as D, P and EP, do not exhibit any overlap at all. In our approach
the separation of overlaps into the ¢ and = type is less emphasized. It is likely that
this reflects better the real course of events.

While the number of adjustable parameters in Ref. [5] amounts to 4, it is
restricted to 2 in our approach: the constant 4 and the charge on the nucleus Z.
Both have precise physical meaning, as Z results from the screening of the carbon
nucleus by electrons.

4 Nonbonding interaction Vyg

Attractive and repulsive components are singled out in the nonbonding potential
[7,10]. The attractive part arises from dispersive interactions and at longer
distances is best approximated by a term proportional to r;;°. Such a propor-
tionality is well established both by experiment and theory [9]. The repulsive part
of the potential presents more problems. Wardlaw and Marcus [7] opted for the
Lennard-Jones 6—12 potential whilst Darvesh et al. [5] used a modified form of the
Morse potential. The Lennard-Jones potential is known to be a rather coarse
approximation. Introduction of the Morse potential involves additional adjustable
parameters. Since quantum mechanics indicates that the exponential character of
the repulsive part predominates [11, 12], we chose a Buckingham exp-6 potential

[10].

Vii(rij) = ai; exp(—mnyri;) — % (31)
LY}

The parameters a;; and b;j, hence auy, dew, dee and byu, beu, boc, are expressed
by the depth of the potential well &;, i eyy, écit; £ccs and by the radn Foij
(Fomm, Tocn, Foce) Which determine the location of a minimum on the curve V;(r;).
These functions can be found taking into account the criteria for the occurence of

a minimum [10]. The parameters n;; are treated in this procedure as fixed.
Thus Vyg is assumed to arise from the separate contributions of interactions
between individual atoms. Such an assumption was also adopted in Refs. [5, 7].

5 Fitting of parameters

The parameters nyy, nee and ney are selected to be varied in Vyg. Thus,
altogether five adjustable parameters are necessary; others are fixed and taken
from the literature, mostly from Ref. [7]. All the quantities used are assembled in
Table 3.
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Table 3. Parameters of the potential energy surface

Parameter Magnitude Literature
Fixed parameters
Fonn [é] 337 [7]
rocc [A] 3.88 [7]
rocu [A] 3(romm + roce) [7,10]
ey [kcal/mol] 0.01 [7]
ecc [keal/mol} 0.095 [7]
&cn [keal/mol]  euntce [7,10]
Adjusted parameters

Set

First Second
I [{X"l] 3.7557 F 0.001 3.7895 ¥ 0.029
nee [A71] 3.2575 ¥ 0.034 38112 ¥ 0.377
nen [A71] 2.9395 F 0.018 23254 F0.252
VA 2.7525 F 0.012 2.7212 F0.017

A [kcal/mol]

57899 ¥ 17.54

564.25 F 67.59

265

The procedure of fitting these parameters to the ab initio results is based on the
mean quadratic approximation extended on nonlinear systems [13]. The results of
fitting are shown in Table 3. Two variants are examined. The whole set of 19
ab initio points is used in the first and second variant of approximation.

The first one uses a criterion of minimization of the sums of the squared
deviations between the value computed accurately [5], ¥4, and the value fitted, V,,
where the subscript k (k = 1,2, ...,19) stands for the number of a given structure.

S=)[7 -Vl (32)

The agreement with the individual ab initio structures is very good at short
distances 2.5-3.5 A (see Table 2). The magnitude of the potential is large at such
short distances, however. With r surpassing 3.5 A, the potential decreases on the
average by an order of magnitude. Consequently, the agreement deteriorates to
become less satisfactory for some structures.

Especially, the 4E structure exhibits the worst performance. Enhancement in
the number of fitting parameters as well as the use of the modified form of the 6-exp
potential [14] offers no remedy. Also complete deletion of the 4E geometry does
not lead to any significant improvement. The reasons for such a discrepancy are
not clear. As can be seen in Table 2, at a distance of 3 A the E geometry is definitely
less energetically fayorable than the F geometry. However, a small change in the
distance, by only 1 A, leads to a complete reversal of the situation; the 4E structure
becomes more favourable than the 4F one. Such a dramatic change is unlikely to
occur at such short a distance. Moreover, our potential approximates to all of the
other geometries quite satisfactorily. Apparently, there is some error in the calcu-
lations of the 4E structure even though it cannot be inferred explicitly on the basis
of our results,

Generally, provided that the disagreement with the 4E structure is ignored,
the results of approximation are satisfactory; the mean standard deviation is



266 M. Naroznik, J. Niedzielski

0.168 kcal/mol.For instance, the difference between the structures 3E and 3EP is
shown clearly; while the parts Vyg are almost equal, the parts Vg definitely are not.
The structure 3E exhibits pure overlap of the n type; no overlap at all can be
detected in the structure 3EP. As the overlap of partially occupied orbitals exerts
a stabilizing influence, the energy for 3E is smaller by more than 1 kcal/mol than
that for 3EP on the basis of ab initio results. The fitting procedure reproduces
this trend. Most satisfactory agreement occurs also for both energetically unfavor-
able 3G and 2.5F structures and favorable 2.5S, 38, 3A structures and for many
others.

Comparison with former works [5, 7, 12] does not reveal marked discrepancies,
even though the forms of approx1mat10n functions were different. Darvesh et al, [5]
estimated nyy = 3.44 A~! which is not very different from our estimate 3.75 A~
The best agreement with SCF atomic orbitals for the carbon atom is achieved at
Z =3.136 [11]. Our value, Z = 2.752, is substantially smaller; however, the carbon
atom considered in this work is linked with three hydrogen atoms which increases
the screening effect and decreases Z.

To obtain good approximation at longer distances, r > 3.5 A the relative
square of deviations was applied as the fitting criterion in the second variant. Such
a procedure yields reliable results for large interradical separations [1]

S = ; [———an,;c V"] . (33)

Obviously, the agreement at shorter distances, r < 3.5 ;\, suffers under the use
of such a criterion. At longer distances the agreement becomes excellent, which is
noteworthy, as long distances are of special significance. We elaborate on this in
Sect. 6. All in all, the parameters fitted in variant II do not differ much from those
fitted in variant I; the worst agreement is for ney and nee.

6 Potential at long distances

As formerly discussed, the Vyg potential fails to be correct at both longer and
shorter distances. This failure involves especially the attractive term proportional
to r;;°. It is known that this relation holds very well at long distances [9] when
the mutual overlap of wave functions of the interacting bodies can be ignored
on the basis of the so-called polarization approximation. No wonder that our
approximation works better, the longer the distance between the radicals; the best
results are those obtained by using criterion 33 in the second variant shown in
Table 3.

There is another reason to be concerned with longer distances. Such distances
are of special significance in the description of the initial stage of radical
recombination; perturbation calculus can be used under such circunmstances [3].
Our potential is to be used to compute the matrix elements of the type 1 with
functions i, that refer to the rotational states and are indispensable in the
above-mentioned calculations. The Vy potential resulting exclusively from the
overlap of unoccupied orbitals is amenable to such a treatment. The Vyg
part, however, depends on the internal structure of reactants, for instance, on the
bond lengths between the individual atoms. With a shortening of the distance,
rotational motion becomes more and more hindered and finally full rotations stop
altogether.
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It can therefore be assumed that the centers of mass of reacting radicals are
separated by a distance that is long compared with the radical dimensions. The
variables defined in Eq. (5) have to satisfy the relations
|| <1,
lyil < 1,

Under such an assumption, the Vyg potential can be expanded into a series
around a point p = (z;; =0, y;; = 0, »; = 0):

1 aV,J 1 GV,J 1 aVl]
v = o+ | eyl ] o 52]
+ 1 Fanij 5 N 1 32V.—,~ . 1 anij
21| 0z pwij 2! 0255 pmuyu 21| Oz pml}z’]
+ Ll 62Vij + 1 02V,-j 2 4 1 aZVij
1 e R AT I - SR T) E e R

1 [ &y, 1[ v, 1 [o2v,]
5l pzijxij'l‘i EY p’vij%‘j*‘ﬂ > p%ij

. _6zijx,-j 6zijyij

+ o (35)

Based on this expansion the Vg can, after some transformations, be reduced to
the form

Vag = Z Vii(r)

vy
+3r é’r(r) [ sinf cosd + y;;sin @ sin ¢ + «;; cos 6]
ij

+Y 4 [an""(” - aV""(r)]

or? r or

X [;sin 0 cos ¢ + y;;sin O sin ¢ + «;; cos ]2
oV (r
+ 24 02 v, (36)
ij

Next, the primed system x', ',z is replaced by the doubly primed system
x",y", 2" using transformation (7). As the radicals are symmetrical tops, there are
many symmetry elements and the form of the potential can be simplified consider-
ably. For instance, all the sums of the Yxi, Y yi, Y xi v type, and similar others
vanish; only those sums that feature doubly primed coordinates squared and ¥z},

Y.zj and Y z{z] remain different from zero. Also the relationship Y xit =Y yi?
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is obeyed. All this taken into account leads, after onerous but not difficult
transformations, to the form

Vag =3, V()
ij

oV oV,
- [cos@l Z—é’@zg’ - cosGZZ—Vé’T(r)z}]

ij ij

0* V,,(r) 1 9Vi;(r)
- - T

r

x [(xi? + yi* — 2z{*) cos? 6, + (x}> + y}* — 22}?)
X COS 02 + 4z]z} cos 8y cosB, — (x}* + yi? + xj* + yi*)]

2
Zl () 112 + y:/Z +Zl/2 + x;z + y;lZ _l_ ZUZ 2Z// II COSGIZ]
(37)

The meaning of the symbols cosf;, cos8,, cosf,, is the same as in Eqgs.
(24)- (26) The values for the doubly primed coordinates x;, y; and so forth are
shown in Fig, 2.

The first term in Eq. (37) corresponds to the zero term of expansion, the second
term is the first term of expansion while the third and fourth terms correspond
to the second term of expansion for Vyp around the point p = (2;; =0, »; =0,
Zij = 0)

Equation (37) holds for all the molecules of symmetrical top type. For
the planar methyl radicals the coordinates z; and zj are zero which leads to
further simplifications. Only the zero and second terms are different from
zero. Were the umbrella structure of CH, taken into account, the first term would
not have vanished as well. But even under such circumstances the second term
need be accounted for, as the restriction to the first approximation is too
inaccurate.

Ultimately, Vyp at larger distances becomes

VNB =&y — &1 COS2 01 — &3 COS2 02, (38)
where
aZI/, r 1 V r " ” " ”
o=V ()+Z4[ an() +- a()]( 2y ), (39)
5]

V() 10V vy
—_ = 3 _ = 14 r/ " 40
81 % 4 l: arz r ar + yl > ( )

1 a:,’I/ij(r) 1 aI/l](r) /12 "2

As both the reacting radicals are identical, further symmetries occur as, for
instance, &; = &,. In order not to lose generality these simplifications are not
introduced. R

The derived form of Vyg can be used starting from a distance of about 3.5 A. At
so short a distance it fails, however, for some very energetically unfavorabie
orientations, such as G, F, EP. Starting from about 4.5 A, Eq. (38) works very well
for all orientation angles.
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7 Conclusions

The interaction energy of the radicals at the distance r > 3.5 A is obtained ulti-
mately in the form

V =g, — & cos?0; — ¢, cos? b,

— Aexp <~— f—:) [f1(r) cos 81, — f5(r) cos B cos 0,17, (42)

which is very convenient for computation of the matrix elements (Eq. (1)) for the
rotational states as discussed in paper [3]. By no means do we claim by this
statement that the problem of the V potential and its components is definitely
solved. There is room for improvement especially if more ab initio calculations of
the radical interactions at longer distance, r > 3.5 A, become available.
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