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Abstract. The interaction potential between two planar methyl radicals is investi- 
gated based on the available ab initio calculations. Two components contribute to 
this potential: a bonding potential, VB, an angle-dependent square of the overlap 
integral for unoccupied Pz orbitals, and a nonbonding potential, VNB, a total of the 
long-range dispersive and short-range repulsive interactions. The analytical form 
of the potential, valid at longer distances, can be used for evaluation of the matrix 
elements of functions describing rotational states. 
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1 Introduction 

Theoretical studies of reaction kinetics involve frequently the use of the potential 
energy surface of interacting reagents. The details of this surface can be elucidated 
mostly, although not exclusively, on the basis of ab initio calculations. Different 
analytical forms employing different approximations can be used. The interaction 
of methane molecules is a good example that has been studied extensively using 
this approach [1]. Also the reaction H + CH3 ~ CH4 attracted considerable 
attention [2]. 

If quantum mechanical methods are to be used, the form of the V potential that 
describes the interaction of reactants has to be peculiar, so as to make it possible to 
calculate easily the matrix elements of the type 

V. =ff .VOmd  (1) 

where 0, and 0,, are the wave functions of the Hamiltonian of the system and dz is 
the element of volume. The potential expressed in this form may be very useful in 
investigations on weakly interacting systems [3]. 

For radicals interacting in the gas phase at longer distances, the ~, functions 
refer mainly to the rotational states and can be expressed as linear combinations of 
products of generalized spherical functions and spherical harmonics [3]. As calcu- 
lations of the integrals shown in Eq. (1) involve the use of recurrent relations, the 
derived form of the potential has to be amenable to such a treatment. 
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It is also of importance that all the forces connected with this potential be 
strictly Newtonian. The principle of total momentum conservation is thereby 
satisfied and the recurrent formulae describing addition of momenta in quantum 
mechanics can be used [-3, 4]. 

As a model system we use the interaction of methyl radicals [-5, 6]. 
There have been many ab initio studies of this interaction energy. From our 
point of view the work of Darvesh et al. l-5] is of greatest importance. The 
method was modeled on those used successfully on the CH4 system. The 
energy was estimated using the multireference single- and double-excitation 
configuration interaction (MRD CI) method. A flat equilateral geometry 
was selected for CH3 at a bond length for C - H  of 1.079 A. The orientations 
and distances r between the radicals were varied. The cases examined are 
listed in Table 1. The interaction energy V is the difference between the 
total energy 9f the system at a given r and the energy at a very long 
distance (20A) when the radicals do not interact for all practical 
purposes. The values for V are shown in Table 2 in dependence on orientation and 
distance. 

2 Notation and basic relations 

The methods described below are general. Adaptation to more or less complicated 
systems is straightforward. The only requirement imposed is that the potential be 
separable into the constituents which incorporate the bonded and nonbonded 
interactions [7]: 

v = vB + VNB. (2) 

The VB part arises from the overlap of nonfilled orbitals occupied by the 
unpaired electrons of the radicals. This potential is always attractive at opposed 
spins and it is involved in the formation of the C - C  bond. 

The second component, VNB, is the sum of interactions of the individual 
pairs: 

VNB = 2 2 Vij(rij )" (3) 
i j 

These may be, for instance, interactions of the pairs H .-. H, H .-. C, C..-  C and 
many others. The symbol r~j denotes the distance between the ith component of the 
first fragment and the j th component of the second fragment. These interactions 
result from fluctuations of electron densities and repulsions of fully occupied 
electron orbitals. 

In the frame of the center-of-mass system, X1, Y1, Z1 and Xz, Y2, Z2 refer 
to the first and second fragments, respectively. The coordinates x~a)i, Y(1)i, z(1)i 
and X~z)j, Y~z)~, Z~z)j determine the location of individual atoms with respect 
to the radical center-of-mass (i,j = 1,2, 3,4). From now on the subscripts 
(1) and (2) will be omitted and retained only for the general coordinates 
which do not refer to a particular component. Next, we introduce the 
common center of mass X, Y , Z  where X=(M1X1 +MaXz)/(M1 + M  z) 
etc., and the relative coordinates which are expressed in the spherical 
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Table 1. Values of angles at the different interradical orientations [5] 

259 

Geometry ~l/rc fll/rc O~z/~ flz/n 

o 1 

o ~ 0 ~ ~ ~ _ ~ (  

V ½ ~ % " - ' -  

P ½ ½ o ~ ~), 
EP ~ 0 ~ ½ " ~ - - ~ - -  

/ 

Other angles are: 
~q=O 7 2 = 0  O=½rt ~b=O 

c o o r d i n a t e s  r, O, q~ where  r is the  d i s t a n c e  b e tween  the cen te r s  of  m a s s  of  the  
f r agm en t s :  

X2 - X1 = r sin 0 cos  ~b, 

II2 - Y1 = r sin 0 sin ~b, 

Z 2 - -  Z 1 = / ~  c o s  O, (4) 
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Table 2. Interaction potential for the methyl radicals estimated by the ab initio method [5], ~; and for 
the structures listed in Table 1 

Struct. 4/ V V V 
ab initio fitted first set fitted second set analytical form eq. (42) 

2.5F a 28.921 28.927 29.675 
2.5S - 19.168 -19.126 -15.684 
3EP 12.375 11.986 8.871 
3K -2.691 -2.930 -3.047 
3J -5.041 -5.145 -5.333 
31 -5.289 -5.373 -5.455 
3G 47.468 47.467 49.821 
3F 4.410 4.333 4.008 
3E 11.185 11.595 8.439 
3A -7.557 -7.557 -7.691 
3S -7.624 -7.571 -7.706 
3.5S -2.553 -2.320 -2.494 
4P -0.304 -0.283 -0.292 
4I -0.652 -0.598 -0.650 
4F -0.380 -0.265 -0.271 
4E -0.390 0.012 -0.049 
4D -0.249 -0.168 -0.236 
4A - 0.810 - 0.699 - 0.767 
4S -0.813 -0.699 -0.767 
20S 0.000 0.000 0.000 

- 2.506 
- 0.288 
- 0.645 
- 0.307 
- 0.307 
- 0.288 
- 0.764 
-0.764 

0.000 

a A number preceding the name of the structure gives the distance in ,~; energy is given in kcal/mol 

Also  d i m e n s i o n l e s s  va r i ab l e s  are  i n t r o d u c e d :  
! t 

x j  - -  x i  
x i j  ~- _ _  

r 

y t  - -  ! 
j Y i  

~i j  = - - ,  

! t 

Zj--Z i 
~ i j = - -  (5) r 

T h e  . . . . . . . . .  c o o r d i n a t e s  i n t e r -  x(1), Y(a), z m  c o o r d i n a t e s  are  r e l a t ed  to  x(1), Y(1), z(1) 
l i nked  r ig id ly  w i t h  t h e  r ad ica l s  by  the  o r t h o g o n a l  t r a n s f o r m a t i o n  

w h e r e  

YlI, [ = S1 Y('I,/' (6) 

zi, I 

F cos a~ cosflt cosh  - s in~  sinyl 

S~ = / s i n a l  cosfl~ cosh  + cos~  sinTt 

k - sinfll cosh  

- c o s ~ i  cosfl~ s inh  - s i n ~  cosh  

- sinai cosfi~ s inh  + cos~ cos h 

sinfll s inh  

1 
cos ~1 sin i l l ]  

sin~l s i n f l i ~  . 

cos fl~ 

(7) 
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Fig. 1. Euler diagram depicting the location 
of radicals in the primed system x', y', z' 

y,, 

3 

xi'=_ -~- rcH 

yi'= - -~- rcu 

z~'= 0 

×i' = -~- re. 

y~' = _ 21-- rcH 
z½'= 0 
x~'=O 
y~ '= rc~ 

z~=O 
x ; '  = y j '  = z~' = 0 

,w 
x 

Fig. 2. Location of methyl 
radicals in the doubly primed 
system x", y", z" (rcn = 1.079 A) 

The  Euler  angles, ct, fl and 7, are shown in Fig. 1. The location and coordinates  
of radicals in the doubly  pr imed system x", y", z" are shown in Fig. 2. 

Analogous relations can be written for the second fragment, i.e. x{2), Y~2), Z~a); 
t t  t t  t !  . 

X(2), Y(2), Z(2), (~2, f12, 3)2, and $2. 
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Taking all these relations into account, the distance rij can ultimately be 
transformed into 

r u = rx/(~ u + sin 0 cos ¢)2 + (~u + sin 0 sin ¢)2 + (*u + cos 0) 2. (8) 

3 Bonding interaction VE 

It can be assumed that the carbon atom in the planar methyl radical is in a state of 
s p  2 hybridization. Thus the orbital Pz occupied by only one electron is located in 
the plane perpendicular to the plane of the radical. The partially occupied orbitals 
overlap and the interaction potential VB is, according to Mulliken [8], proportional 
to the square of the overlap integral. The overlap integral can be written in the 
form [9] 

f  f2;2 s = pz(1)(x, y, z)p~(z)(X, y, z) dz, (9) 

where Pz(a) and P~(2) refer to the first and second fragments, respectively, while 
d~ = dx dy dz is the element of volume of some arbitrarily fixed reference system. 

For the system x", y", z" the orbitals Pz are given by [9] 

, ,  

Pro) = Nz(a) exp \ 2ao J '  (10) 

tt / , , 2  t t2  t ,2  (11) ro) = x / x o )  + Y(~) + z o ) ,  

J 
Pz(2) 

" = x /  ,,z (13) r(2) x{'2~ + y{'2 2) + z(2), 

where N is the normalization constant, Z is the nucleus charge and ao is the radius 
of the Bohr orbit [9]. 

Using transformation reciprocal to Eq. (7) the orbitals Pz(1) and Pz(2) become 

(_Zril,) 
p ~ m = N [ X i l ) C O S e l s i n f l l  + y~l)sinei sin/~ + zil)cosfl l]  exp \ 2ao / / '  (14) 

Pz(2) = N[xI2)cosc~2 sin/?2 + Y~2) sin~2 sin/~2 + z~2) cosfl2] exp ( -  2ao J '  (15) 

Using the substitution x~x) = XM -- Xa + X ;  x~z) = XM -- X2 + X etc., the sys- 
tem of the center of mass for both the fragments is introduced. 

If M1 = M2 we obtain 

x~l) = XM + ½r sin 0 cos ¢, 

Y~I) = YM + ½r sin 0 sin ¢, 

Z(1 ) = Z M -{- 11" COS 0 (16) 
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and 

xi2) = XM -- ½r sin 0 cos ~b, 

Ylz) = YM -- ½r sin 0 sin qS, 

z~) = ZM -- ½r COS 0. (17) 

Subst i tut ion from Eqs. (16) and (17) into (14) and (15) followed by ro ta t ion of 
the system XM, YM, ZM through the angles 0 and ~b leads to 

ExMI icos0cos  sin  
YM = COS 0 sin q~ cos ~b 

Zu - sin 0 0 

Finally we obtain 

sinOc°s   Ii 1 
sin 0 sin q~ ] 

cos 0 _J 

(18) 

Pz(1) = {x[cos 0 sinfl,  cos(~b - a , )  - s in0 cos f l l ]  - y sinfll sin (q~ - cq) 

Zr,,) 
+ (z + ½r) [cos 0 cos fix + sin 0 sin fll cos(q~ - ~1)] } exp - 2ao J '  

(19) 

Pzt2) = {x [cos 0 sin,82 cos ((;b - ~2) - sin 0 cos,82] - y sin,82 sin (~ - ~2) 

zr,2;  
+ (z -- i t )  [cos 0 cos f12 + sin 0 sin f12 cos (q~ - a2)] } exp - 2 a o / '  

(20) 
where 

r(,) = x / x  2 + y2 + (z + lr)2, (21) 

rt=) = x / x  z + y2 + (z -- ½r) a. (22) 

The  functions Pzo) and Pz(z) are now substituted into Eq. (9). With the use of 
elliptical coordinates  the integral in Eq. (9) acquires an elementary form which can 
be computed.  We obtain 

s = g 2 e x p  - -~a0  [ f l ( r ) c ° s O 1 2 - f 2 ( r ) c ° s 0 1 c ° s 0 2 ] '  (23) 

where 

cos01 = cosfl l  c o s O +  sinfl,  sinO cos(q~ - e , ) ,  (24) 

cos02 -- cosfl2 c o s O +  sinfl2 sinO cos (~b - ~2), (25) 

cos012 = cosfl l  cosflz + sinflx sinfl2 cos(cq - ~2) (26) 

and 

f l ( r )  = 1 + ~ a [ 1 5  + a(6 + a)], (27) 

fz(r) = a2~[1 + a(1 + ½a)], (28) 

Zr 
a = 2ao (29) 
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As the energy VB is proportional to the square of the overlap integral we can 
write 

VB = --Aexp --~oo [- fa(r)cos012 -- f z (r )  cos 01 cos02] 2, (30) 

where A is the constant expressed in terms of energy. 
Our result differs somewhat from that obtained earlier by Darvesh et al. [-5]. 

The common feature is the exponential decrease in VB with increasing r. The angle 
dependencies are not the same, however. Darvesh et al. single out the a-overlap 
(structures S, A, I, J, K) and the n-overlap (structures E, F, G); some of their 
structures, such as D, P and EP, do not exhibit any overlap at all. In our approach 
the separation of overlaps into the a and ~ type is less emphasized. It is likely that 
this reflects better the real course of events. 

While the number of adjustable parameters in Ref. [-5] amounts to 4, it is 
restricted to 2 in our approach: the constant A and the charge on the nucleus Z. 
Both have precise physical meaning, as Z results from the screening of the carbon 
nucleus by electrons. 

4 Nonbonding interaction VNB 

Attractive and repulsive components are singled out in the nonbonding potential 
[-7, 10]. The attractive part arises from dispersive interactions and at longer 
distances is best approximated by a term proportional to r~ 6. Such a propor- 
tionality is well established both by experiment and theory [9]. The repulsive part 
of the potential presents more problems. Wardlaw and Marcus E7] opted for the 
Lennard-Jones 6-12 potential whilst Darvesh et al. [-5] used a modified form of the 
Morse potential. The Lennard-Jones potential is known to be a rather coarse 
approximation. Introduction of the Morse potential involves additional adjustable 
parameters. Since quantum mechanics indicates that the exponential character of 
the repulsive part predominates [11, 12], we chose a Buckingham exp-6 potential 
[-10]. 

Vij(rij) = aij e x p ( -  nijrij) bij r6.  (31) 

The parameters aij and b~j, hence anH, acH, acc and bun, bcH, bcc, are expressed 
by the depth of the potential well e~j, i.e. e~H, ecH, ecc, and by the radii ro~j 
(roan, rocn, rocc) which determine the location of a minimum on the curve V~j(r~j). 
These functions can be found taking into account the criteria for the occurence of 
a minimum [10]. The parameters nij are treated in this procedure as fixed. 

Thus VNB is assumed to arise from the separate contributions of interactions 
between individual atoms. Such an assumption was also adopted in Refs. [-5, 7]. 

5 Fitting of parameters 

The parameters nHn, ncc and ncn are selected to be varied in VNB. Thus, 
altogether five adjustable parameters are necessary; others are fixed and taken 
from the literature, mostly from Ref. [7]. All the quantities used are assembled in 
Table 3. 
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Table 3. Parameters of the potential energy surface 

Parameter Magnitude Literature 

Fixed parameters 

ronn @] 3.37 [7] 
rocc [A] 3.88 [7] 
rocH [A] X2(ronu + rocc) [7, 10] 
eHH [kcal/mol] 0.01 [7] 
ecc [kcal/mol] 0.095 I-7] 
ecn [kcal/mol] ~ 1-7, 10] 

Adjusted parameters 

Set 
First Second 

[~-1] 3.7557 -T- 0.001 3.7895 T- 0.029 nI-IH 
ncc [A -1] 3.2575 -T- 0.034 3.8112 -T- 0.377 
ncH [,~- 1] 2.9395 -T- 0.018 2.3254 T- 0.252 
Z 2.7525 -T- 0.012 2.7212 -T- 0.017 
A [kcal/mol] 578.99 -T- 17.54 564.25 ~ 67.59 

The procedure of fitting these parameters to the ab initio results is based on the 
mean quadratic approximation extended on nonlinear systems [13-]. The results of 
fitting are shown in Table 3. Two variants are examined. The whole set of 19 
ab initio points is used in the first and second variant of approximation. 

The first one uses a criterion of minimization of the sums of the squared 
deviations between the value computed accurately [5], "Uk, and the value fitted, Vk, 
where the subscript k (k = 1, 2 , . . . ,  19) stands for the number of a given structure. 

S = Y' [~k -- Vk] 2. (32) 
k 

The agreement with the individual ab initio structures is very good at short 
distances 2.5-3.5 A (see Table 2). The magni tude of the potential is large at such 
short distances, however. With r surpassing 3.5 A, the potential decreases on the 
average by an order of magnitude. Consequently, the agreement deteriorates to 
become less satisfactory for some structures. 

Especially, the 4E structure exhibits the worst performance. Enhancement in 
the number  of fitting parameters as well as the use of the modified form of the 6-exp 
potential [14] offers no remedy. Also complete deletion of the 4E geometry does 
not lead to any significant improvement.  The reasons for such a discrepancy are 
not clear. As can be seen in Table 2, at a distance of 3 A the E geometry is definitely 
less energetically favorable than the F geometry. However, a small change in the 
distance, by only 1 A, leads to a complete reversal of the situation; the 4E structure 
becomes more favourable than the 4F one. Such a dramatic change is unlikely to 
occur at such short a distance. Moreover, our potential approximates to all of the 
other geometries quite satisfactorily. Apparently, there is some error in the calcu- 
lations of the 4E structure even though it cannot be inferred explicitly on the basis 
of our results. 

Generally, provided that the disagreement with the 4E structure is ignored, 
the results of approximation are satisfactory; the mean standard deviation is 
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0.168 kcal/mol.For instance, the difference between the structures 3E and 3EP is 
shown clearly; while the parts VNB are almost equal, the parts VB definitely are not. 
The structure 3E exhibits pure overlap of the rt type; no overlap at all can be 
detected in the structure 3EP. As the overlap of partially occupied orbitals exerts 
a stabilizing influence, the energy for 3E is smaller by more than 1 kcal/mol than 
that for 3EP on the basis of ab initio results. The fitting procedure reproduces 
this trend. Most satisfactory agreement occurs also for both energetically unfavor- 
able 3G and 2.5F structures and favorable 2.5S, 3S, 3A structures and for many 
others. 

Comparison with former works [5, 7, 12] does not reveal marked discrepancies, 
even though the formsof approximation functions were different. Darvesh et al~ [5] 
estimated nail = 3.44 A-  1 which is not very different from our estimate 3.75 A-  1. 
The best agreement with SCF atomic orbitals for the carbon atom is achieved at 
Z = 3.136 [11]. Our value, Z = 2.752, is substantially smaller; however, the carbon 
atom considered in this work is linked with three hydrogen atoms which increases 
the screening effect and decreases Z. 

o 

To obtain good approximation at longer distances, r > 3.5 A, the relative 
square of deviations was applied as the fitting criterion in the second variant. Such 
a procedure yields reliable results for large interradical separations [1] 

Obviously, the agreement at shorter distances, r < 3.5 A, suffers under the use 
of such a criterion. At longer distances the agreement becomes excellent, which is 
noteworthy, as long distances are of special significance. We elaborate on this in 
Sect. 6. All in all, the parameters fitted in variant II do not differ much from those 
fitted in variant I; the worst agreement is for riCH and ncc. 

6 Potential at long distances 

As formerly discussed, the VNB potential fails to be correct at both longer and 
shorter distances. This failure involves especially the attractive term proportional 
to r~ 6. It is known that this relation holds very well at long distances [9] when 
the mutual overlap of wave functions of the interacting bodies can be ignored 
on the basis of the so-called polarization approximation. No wonder that our 
approximation works better, the longer the distance between the radicals; the best 
results are those obtained by using criterion 33 in the second variant shown in 
Table 3. 

There is another reason to be concerned with longer distances. Such distances 
are of special significance in the description of the initial stage of radical 
recombination; perturbation calculus can be used under such circumstances [3]. 
Our potential is to be used to compute the matrix elements of the type 1 with 
functions On that refer to the rotational states and are indispensable in the 
above-mentioned calculations. The VB potential resulting exclusively from the 
overlap of unoccupied orbitals is amenable to such a treatment. The VNB 
part, however, depends on the internal structure of reactants, for instance, on the 
bond lengths between the individual atoms. With a shortening of the distance, 
rotational motion becomes more and more hindered and finally full rotations stop 
altogether. 



Analytical form of the interaction energy 267 

It can therefore be assumed that the centers of mass of reacting radicals are 
separated by a distance that is long compared with the radical dimensions. The 
variables defined in Eq. (5) have to satisfy the relations 

I ,jl < 1, 

Iff~j[ < 1, 

I~jl < 1. (34) 

Under such an assumption, the VNB potential can be expanded into a series 
around a point p =- (~q = 0, ~ j  = 0, ~ij = 0): 

Vij(riJ) ~ Vij(r) -[- -~" L ~ i J  Jp ~7~iJ ~- ~" L Jp ~ij -~- -~. L ~ i j  j p ~ij 

1 [~Vij] I F c92V'j ] I~ c92Vq ] 

+ ~ L ~ i j ~ i j l p  ~ij6~iJ "q- -~. L~SCij~tijjp :~ij~ij At.- 2! L o.~ Jp YCij 

+ - -  (35) 

Based on this expansion the VNB can, after some transformations, be reduced to 
the form 

= % ( r )  
ij 

+ ; r ~ [~ij sin 0 cos ~b + 8ij sin 0 sin q$ + ~ij cos 0] 
tj 

.t;.. L -J7 ; ar j 

x [~ij sin 0 cos q$ + ~ij sin 0 sin ~b + ~ij cos  0 ]  2 

+ ~ ½r ~ [ ~  + ~,~ + 2].  (36) 
ty 

Next, the primed system x', y', z' is replaced by the doubly primed system 
x', y", z" using transformation (7). As the radicals are symmetrical tops, there are 
many symmetry elements and the form of the potential can be simplified consider- 
ably. For instance, all the sums of the y x 7, y~y'~', ~,xi'yi' type, and similar others 
vanish; only those sums that feature doubly primed coordinates squared and ~ z'[, 
Zz~ and Zzi'z~ remain different from zero. Also the relationship Y x'i '2 = Z y 7  2 
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is obeyed. All this taken into account leads, after onerous but not difficult 
transformations, to the form 

VNB = ~ V,j(r) 
ij 

[COS 01 ~'~ OVq(r) ~ OVo(r ) z,-] 
r, 'J 

- Z¼ L ~r~ ar j U r 

× [(x: '~ + y';2 - 2~'/~) cos ~ o~ + (x?  + yj~ - 2~; ~) 

x cos2 02 + 4z~'zj cos01 cos0z - -  (X'i '2 "]-Yi-- "2 "Jr-Xjtt2 "Oryj'"2:]) 

1 0 V ~ j ( r )  [x , /2  ,,~ .2  ,,~ . . . .  
+ 2 1 r . .  Or " "k-Y'i'2-k-ZTZ-k-XJ +yj  +z j  - 2 z i z j c o s O l z ] .  

tJ 
(37) 

The meaning of the symbols cos 01, cos 02, cos01z is the same as in Eqs. 
(24)-(26). The values for the doubly primed coordinates x}', y'[ and so forth are 
shown in Fig. 2. 

The first term in Eq. (37) corresponds to the zero term of expansion, the second 
term is the first term of expansion while the third and fourth terms correspond 
to the second term of expansion for VNB around the point p - (a~j = 0, ~¢i~ = 0, 
~:ij = 0). 

Equation (37) holds for all the molecules of symmetrical top type. For 
the planar methyl radicals the coordinates z; and z~ are zero which leads to 
further simplifications. Only the zero and second terms are different from 
zero. Were the umbrella structure of CH3 taken into account, the first term would 
not have vanished as well. But even under such circumstances the second term 
need be accounted for, as the restriction to the first approximation is too 
inaccurate. 

Ultimately, VNB at larger distances becomes 

VNB = gO - -  gl COS2 01 - -  e2 COS2 02, (38) 

where 

1 F ~2Vij(r) 1 ~V2L(r )~ ,,a ,,z, 
eo = ~ij V'v(r) + "" ~ [_ Orz + r Or J (Xlt2 + y72 + Xj + yj ), (39) 

.j 

= ~ 1 [ ~2Vij(r) 10Vij(r)l 
~2 , j 4 L  ~r2 r V J ( x ? + Y ; 2 ) "  (41) 

As both the reacting radicals are identical, further symmetries occur as, for 
instance, ~1 = ~2. In order not to lose generality these simplifications are not 
introduced. 

The derived form of VNB can be used starting from a distance of about 3.5 A. At 
so short a distance it fails, however, for some very °energetically unfavorable 
orientations, such as G, F, EP. Starting from about 4.5 A, Eq. (38) works very well 
for all orientation angles. 
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7 Conclusions 

The  in te rac t ion  energy of the radicals  at  the d is tance  r > 3.5 ~, is ob ta ined  ulti-  
ma te ly  in the  form 

V = ~0 --  ~1 c°s2 O1 --  ~2 cos2 02 

--  A exp - ~-o [ f l ( r )  cos 01z - f 2 ( r )  cos 01 cos 02] 2, (42) 

which is very convenien t  for c o m p u t a t i o n  of the mat r ix  elements  (Eq. (1)) for the  
ro t a t i ona l  states as discussed in pape r  [3]. By no means  do we claim by this 
s t a t ement  tha t  the p rob l em of the V poten t ia l  and  its c ompone n t s  is defini tely 
solved. There  is r o o m  for i m p r o v e m e n t  especial ly if more  ab initio calcula t ions  of 
the  radica l  in te rac t ions  at  longer  distance,  r >_ 3.5 A, become avai lable .  
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